Calcium-independent contraction in lysed cell models of teleost retinal cones: activation by unregulated myosin light chain kinase or high magnesium and loss of cAMP inhibition

نویسندگان

  • B Burnside
  • N Ackland
چکیده

The retinal cones of teleost fish contract at dawn and elongate at dusk. We have previously reported that we can selectively induce detergent-lysed models of cones to undergo either reactivated contraction or reactivated elongation, with rates and morphology comparable to those observed in vivo. Reactivated contraction is ATP dependent, activated by Ca2+, and inhibited by cAMP. In addition, reactivated cone contraction exhibits several properties that suggest that myosin phosphorylation plays a role in mediating Ca2+-activation (Porrello, K., and B. Burnside, 1984, J. Cell Biol., 98:2230-2238). We report here that lysed cone models can be induced to contract in the absence of Ca2+ by incubation with trypsin-digested, unregulated myosin light chain kinase (MLCK) obtained from smooth muscle. This observation provides further evidence that MLCK plays a role in regulating cone contraction. We also report here that lysed cone models can be induced to contract in the absence of Ca2+ by incubation with high concentrations of MgCl2 (10-20 mM). Mg2+-induced reactivated contraction is supported by inosine triphosphate (ITP) just as well as by ATP. Because ITP will not serve as a substrate for MLCK, this finding suggests that Mg2+-activation of contraction does not require myosin phosphorylation. Although Ca2+-induced contraction is completely blocked by cAMP at concentrations less than 10 microM, cAMP has no effect on cone contraction activated by unregulated MLCK or by high Mg2+ in the absence of Ca2+. Because trypsin digestion of MLCK cleaves off not only the Ca2+/calmodulin-binding site but also the site phosphorylated by cAMP-dependent protein kinase, and because Mg2+ activation of cone contraction circumvents MLCK action altogether, both these observations would be expected if cAMP inhibits reactivated cone contraction by catalyzing the phosphorylation of MLCK and thus reducing its affinity for Ca2+, as has been described for smooth muscle. Together our results suggest that in lysed cone models, myosin phosphorylation is sufficient for activating cone contraction, even in the absence of other Ca2+-mediated events, that cAMP inhibition of contraction is mediated by cAMP-dependent phosphorylation of MLCK, and that 10-20 mM Mg2+ can activate actin-myosin interaction to produce contraction in the absence of myosin phosphorylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of reactivated contraction in teleost retinal cone models by calcium and cyclic adenosine monophosphate

We have been using lysed cell models of teleost retinal cones to examine the mechanism of contraction in nonmuscle cells. We have previously reported that dark-adapted retinas can be lysed with the detergent Brij-58 to obtain cone motile models that undergo Ca++- and adenosine triphosphate (ATP)-dependent reactivated contraction. In this report we further dissect the roles of ATP and Ca++ in ac...

متن کامل

Regulation of reactivated elongation in lysed cell models of teleost retinal cones by cAMP and calcium

Teleost retinal cones elongate in the dark and contract in the light. In isolated retinas of the green sunfish Lepomis cyanellus, cone myoids undergo microtubule-dependent elongation from 5 to 45 micron. We have previously shown that cone contraction can be reactivated in motile models of cones lysed with Brij-58. Reactivated contraction is both actin and ATP dependent, activated by calcium, an...

متن کامل

Reactivation of contraction in detergent-lysed teleost retinal cones

Teleost retinal cones contract in the light and elongate in the dark. In the green sunfish, Lepomis cyanellus, the necklike myoid region of the cone contracts from as much as 120 micrometers (midnight dark-adapted) to 6 micrometers in fully light-adapted state. When dark-adapted fish are exposed to light (1.4 lux), cone myoids contract with a linear rate of 1.5 +/- 0.1 micrometers/min. We repor...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 105  شماره 

صفحات  -

تاریخ انتشار 1987